This site has now been superceded by This site will not be updated anymore.

Shirley Northover

Staff Tutor

After my first degree (in Natural Sciences) and my PhD in physical metallurgy, both at Cambridge University, I was appointed as Research Fellow in the Dept of Materials, University of Oxford, working in three separate subject areas over the course of twelve years: high voltage electron diffraction, stress corrosion cracking of Inconel and high temperature oxidation of stainless steel. I then worked as a technical writer and editor at the Energy Technology Support Unit, Harwell, for a while before joining the Open University, full-time, as a staff tutor in the Technology Faculty, based in Newcastle, in 1996. In this role I managed up to eighty associate lecturers teaching on our faculty's courses all over the NorthEast of England, Cumbria and continental Western Europe. In 2001 I transferred back to Oxford to perform a similar role. In 2006 I re-started research by spending a few months as an academic visitor at the University of Oxford, Dept of Materials and since then I have combined research in the Materials Engineering group of the Open University with the staff tutor role and latterly that of postgraduate tutor in the Department of Engineering and Innovation, Faculty of Mathematics, Computing and Technology.

I am married to another metallurgist who's also an archaeologist and we conduct some joint research on archaeological materials particularly silver and copper.

My background is in using electron microscopy (both SEM and TEM) to study the structure and properties of grain boundaries (GBs) in metals, growth of grain boundary precipitates and the initiation of phase transformations at GBs. Along the way I’ve also worked on theoretical electron diffraction and stress corrosion cracking.

More recently I’ve also become interested in creep of high temperature materials and especially how electron backscattered diffraction (EBSD) can be used to investigate creep damage and to characterise the deformation structures developed during creep.

Although widely used to study engineering materials, EBSD has been used very little in studying archaeological metalwork and I have been using EBSD to examine gold, silver, copper and bronze objects from a range of periods between 13th century BC and 18th century AD to investigate their methods of manufacture. This technique has proved especialy useful in examining copper bolts from the hulls of ships of the time of Nelson's navy and we are comparing measurements of their crystallographic texture by neutron diffraction with the results of EBSD studies.

I'm still very interested in phase transformations and, in addition to work on how precipitation during service can affect the behaviour and lifetime of engineering components used at high temperature, have been looking at the mechanisms of discontinuous precipitation in silver-copper alloys and on the question of whether there might be a microstructural 'fingerprint' to distinguish unambiguously between either cast or wrought 'silver' from the modern era and objects that are genuinely old.

Having in the past been a member of the module teams for T171, T173, TY206, T210, TA225 and TA212, I am currently appointments adviser for T357 and monitor T802.

Having tutored and/or module directed on  T203, T102, TXR174, TXR248, and TXR220, I module direct at TXR220/T276 residential schools in Bath for one week every year.

Email Address: 
Report an error on this page

Staff Tutor

Tel: +441865486259
Email: [javascript protected email address]