Project title: Adhesive, tribological, and lithographic behaviour of novel silicone liquids
Research Theme: Engineering and Medical
Key words: Adhesion, friction, lithography, silicone, surface, tribology, wear
Supervisory team: James Bowen, Salih Gungor, Peter Taylor

Project Highlights:
- Liquid silicones are used for engineering, ophthalmology, and personal care applications.
- Cyclic, branched, and cubic siloxanes offer novel architectures and new avenues of research beyond the linear chain siloxanes.
- Thin film adhesion and tribology will be investigated for a series of structures.

Overview:
Silicones are a category of inorganic polymer whose inherent physical and chemical properties impart them with a unique versatility. The global market value in 2016 was estimated at $13.45 billion, covering construction, electronics, energy, healthcare, and transportation sectors. The annual R&D investment in silicones is $500 million.

Silicones are modern synthetic products derived from quartz sand, and their uses include:
- Sheen agents in shampoos and conditioners
- Water repellency in paints and coatings
- Sealants for electrical equipment
- Medical grade tubing for fluid handling, e.g. blood

The Si-O bond is stronger than the analogous C-C bond in carbon-based polymers. Hence, the durability of polysiloxane materials is remarkable. Low molecular weight polysiloxanes tend to be liquid at room temperature. They can exhibit rheological complexity, such as shear thinning and viscoelastic behaviour. Polysiloxane liquids are typically used for the purposes of modulating adhesion and friction between contacting surfaces.

The Si-O-Si polysiloxane backbone is highly customisable, which means a range of molecular architectures can be synthesized. Figure 1 shows that linear, branched, cyclic, and cubic structures are achievable. Each of these has multiple locations for further custom functionalisation.

The adhesive behaviour of linear polysiloxane thin films has been well characterised, with a clear transition between surface tension-dominated and viscosity-dominated force profiles. No comparable data exists for the other molecular architectures. Exposure of linear polysiloxane thin films to electron beams resulted in their crosslinking, forming rubber-like materials, whose Young's modulus could be controlled via the total electron exposure. Figure 2 shows an example cuboidal structure manufactured in this way. Lithographic patterns were created by controlling the geometry of the exposed regions. Once again, no comparable data exists for the other molecular architectures.

![Figure 1. Chemical structures of (a) linear siloxane, (b) branched siloxane, (c) cyclic siloxane, and (d) octahedral silsesquioxane.](image-url)
This project will firstly explore the adhesive properties of thin liquid films formed by polysiloxanes with branched, cyclic, and cubic molecular architectures, for comparison with the data already obtained for linear polysiloxanes. Secondly, the project will investigate the tribological behaviour of thin films formed by all four types of polysiloxane. The rheological properties of the liquids will be hugely influential for both the adhesive and tribological behaviour, depending on the propensity for molecules to entangle with, or slide across, each other. Finally, the susceptibility of the four types of polysiloxane to electron beam exposure will be studied. In particular, evidence of crosslinking and solidification will be systematically assessed.

The results of these studies will be of use to researchers in a range of fields. Specific interest is expected in the fields of ophthalmology, personal care, and micro/nanofabrication.

![Figure 2. Topography of linear polysiloxane structures post-exposure to electron beam doses of (a) 130 μC/cm², (b) 542 μC/cm², (c) 2.26 mC/cm², and (d) 9.39 mC/cm².](image)

Methodology:
Liquid polysiloxanes with branched, cyclic, and octahedral molecular architectures will be identified and procured. These will be subjected to thorough rheological characterisation. Following optimisation of their deposition as thin films via spin coating, their adhesive properties will be studied using atomic force microscopy. The adhesive behaviour of all four types of polysiloxane, when dispensed as liquid bridges between parallel plates, will also be examined. The susceptibility of the thin liquid films to electron beam exposure will then be assessed.

Partners and collaboration
Dr Alex Robinson (University of Birmingham), an expert in the fabrication of nanomaterials and the use of electron beam lithography.
Dr David Cheneler (Lancaster University), an expert in the manufacture and theoretical analysis of microelectromechanical systems.

Further reading:

Further details:
Students should have a strong background in materials research and enthusiasm for learning state-of-the-art materials characterisation techniques. Practical laboratory experience and problem solving aptitude is essential. The student will join a well-established research group at the Open University, whose expertise includes surface modification and materials characterisation.

The applicant must be willing to travel occasionally to attend international conferences, or to use international research facilities, if and when required.

Please contact Dr James Bowen for further information [james.bowen@open.ac.uk].

Applications should include:
- A 1,000 word cover letter outlining why the project is of interest to you and how your skills match those required.
- An academic CV containing contact details of three academic references.
- SETS test scores where English is an additional language (Secure English Language Test).

Applications should be sent to STEM-EI-Research@open.ac.uk by 19 February 2018.