Jan Kowal

Senior Lecturer

I came to the OU after 20 years working as an engineer in industry, most recently in the field of micro-electromechanical systems. This is a manufacturing technology that uses wafer-scale processing techniques to shape materials such as silicon and glass into miniature physically or chemically active components. This has largely involved designing sensors of various kinds (accelerometers, pressure sensors, CO2 sensors), as well as structures such as microfluidic devices and integrated optical chips. An important process within this technology is that of semiconductor wafer to wafer bonding, and since joining the OU I have been trying to understand the mechanisms by which exposing wafers to gas discharges enhances the strength of the bond made subsequently.

More recently, I have been working in a different field: that of the measurement of residual stress. Here, we have been improving a relatively new method of mapping residual stresses, known as the contour method, in which the sample to be measured is first carefully cut in two using a wire electrodischarge machine. The deviations from flatness of the cut surfaces are then measured and these data are used in a finite element model to calculate the residual stresses that must have been present before the cut was made.

I am chairing T894: Professional Practice Portfolio. This is the key module in the Certificate of Nuclear Professionalism, which is offered by the National Skills Academy for Nuclear. I am a module team member on T174, T176, T276, T207, T356, T802 and T885 and critical reader for the new electronics module currently in production, T212.

Currently I am the Director of Teaching and Chair of the Board of Studies for Engineering and Innovation.

[javascript protected email address]